Tuesday, October 23, 2012

Solving Trigonometric Examples


Answering the trigonometric examples is nothing but we are solving the trigonometric functions and trigonometric identities. Here we will take trigonometric functions and equations. Trigonometric examples contain trigonometric functions. In trigonometric model we will solve the Sin, Cos, Tan Identities. We can find the angles from these identities. We will solve some trigonometric examples.

Explanation for Solving Trigonometric Examples:

Ex 1:     Solve the following trigonometric equation Cos4A – Sinn 2A =0

Sol :      Cos 4A – sin2A =0

2Sin2 (2A) + Sin (2A) – 1 = 0

Here we can use quadratic formula to find A value. Let us take any variable equal to Sin 2A

Let us take y = Sin 2A

2y2 + y – 1 =0

2y2+2y – y – 1 = 0

2y(y + 1) – (y + 1) = 0

If we factor this we will get two values for y.

(y + 1)(2y – 1) = 0

Now y + 1 = 0 2y – 1 = 0

Now plug y = Sin2A

Sin 2A + 1 = 0                                      2Sin2A – 1 =0

Sin 2A = -1                                          2Sin 2A = 1

2A = Sin-1 (-1)                                       Sin 2A =

2A = 270                                             2A = Sin-1

2A = 30

A = 135                                                      A = 15

From this we will get two value for A.

Practice Problem for Solving Trigonometric Examples:

Ex 2:          Solve the assessment of the following trigonometric identity Sin 75 - Cos 15

Sol :           Sin 75 – Cos 15

Here we have to use sum and variation formula to find the value os Sin 75 - Cos 15

Sin (45 + 30) – Cos (45 - 30)

Sin (A + B) = Sin A Cos B + Cos A Sin B

Cos (A - B) = Cos A Cos B + Sin A Sin B

Here A = 45

B = 30

Sin (45 + 30) = Sin45.Cos30 + Cos45Sin30

= 0.7071 * 0.8660 + 0.7071 * (0.5)

= 0.6123 + 0.3536

Sin 75 = 0.9659

Cos (45 – 30) = Cos45Cos30 + Sin45Sin30

=0.7071 * 0.8660 + 0.7071 * (0.5)

=0.6123 + 0.3536

Cos 15 = 0.9659

Now plug the values in the equation is

Sin 75 – Cos15 = 0.9659 – 0.9659

Sin 75 – Cos15 = 0

Ex 3:               Solve for x Sin x = 0.5, Cos x = 0.8660

Sol :             (I)  Given    Sin x = 0.5

x = Sin-1 (0.5)

x = 30o

(II)    Cos x = 0.8660

x = Cos-1 (0.8660)

x = 300

So from this angle x =30o. Here we use the opposite trigonometric functions to find the value of x.

No comments:

Post a Comment