Wednesday, February 27, 2013

Geometric Distributions

Introduction:

Let we will discuss about the geometric distributions. The geometric distributions should be either of two discrete probability distributions in statistics and probability theory. The probability allocation of number X of Bernoulli trials desired to obtain one success, beard on the set { 1, 2, 3, ...}. The probability allocation of number Y = X − 1 of failures previous to the first success, maintained on the set { 0, 1, 2, 3, ... }  


More about geometric distributions:


  • The two distinct geometric distributions does not mystified with each other.
  • Most commonly, name shifted geometric allocation is accepted for the former one.
  • But, to keep away from ambiguity, it is measured wise to point out which is planned, by mentioning the range explicitly.
  • If the probability of success on every check should be p, then the probability that kth check is the first success is,
\Pr(X = k) = (1 - p)^{k-1}\,p\,

Where, k = 1, 2, 3, ....
  • Consistently, if the probability of success on each check is p, then the probability that there are k failures before the first success is
\Pr(Y=k) = (1 - p)^k\,p\,
Where, k = 0, 1, 2, 3, ....

  • In both case, the series of probabilities is a geometric series.

Example:

Assume a normal die is thrown frequently until the first time a "1" appears. The probability allocation of the number of times it is thrown is holded on the endless set { 1, 2, 3, ... }. They should have a geometric allocation with p = 1/6.

Moments and cumulants:
  • The predictable value of a geometrically allocated random variable X is 1/p , variance is (1 − p)/p2
\mathrm{E}(X) = \frac{1}{p},  \qquad\mathrm{var}(X) = \frac{1-p}{p^2}.

  • Likewise, the expected value of the geometrically dispersed random variable Y is (1 − p)/p, and its variance is (1 − p)/p2
\mathrm{E}(Y) = \frac{1-p}{p},  \qquad\mathrm{var}(Y) = \frac{1-p}{p^2}.
  • Let μ = (1 − p)/p be the expected value of Y and then the cumulants κn of the probability distributions of Y satisfy the recursion
\kappa_{n+1} = \mu(\mu+1) \frac{d\kappa_n}{d\mu}.

Outline of proof:

That the expected value is (1 − p)/p can be shown in the following way. Let Y be as above. Then

\begin{align} \mathrm{E}(Y) & {} =\sum_{k=0}^\infty (1-p)^k p\cdot k \\ & {} =p\sum_{k=0}^\infty(1-p)^k k \\ & {} = p\left[\frac{d}{dp}\left(-\sum_{k=0}^\infty (1-p)^k\right)\right](1-p) \\ & {} =-p(1-p)\frac{d}{dp}\frac{1}{p}=\frac{1-p}{p}. \end{align}

No comments:

Post a Comment